Evolutionary Many-Objective Algorithms for Combinatorial Optimization Problems: A Comparative Study

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study on Evolutionary Algorithms for Many-Objective Optimization

Many-objective optimization has been gaining increasing attention in the evolutionary multiobjective optimization community, and various approaches have been developed to solve many-objective problems in recent years. However, the existing empirically comparative studies are often restricted to only a few approaches on a handful of test problems. This paper provides a systematic comparison of e...

متن کامل

A New Evolutionary Decision Theory for Many-Objective Optimization Problems

In this paper the authors point out that the Pareto Optimality is unfair, unreasonable and imperfect for Many-objective Optimization Problems (MOPs) underlying the hypothesis that all objectives have equal importance. The key contribution of this paper is the discovery of the new definition of optimality called ε-optimality for MOP that is based on a new conception, so called ε-dominance, which...

متن کامل

Applying Evolutionary Algorithms to Combinatorial Optimization Problems

The paper describes the comparison of three evolutionary algorithms for solving combinatorial optimization problems. In particular, a generational, a steady-state and a cellular genetic algorithm were applied to the maximum cut problem, the error correcting code design problem, and the minimum tardy task problem. The results obtained in this work are better than the ones previously reported in ...

متن کامل

Automatic Design of Evolutionary Algorithms for Multi-Objective Combinatorial Optimization

Multi-objective evolutionary algorithms (MOEAs) have been the subject of a large research effort over the past two decades. Traditionally, these MOEAs have been seen as monolithic units, and their study was focused on comparing them as blackboxes. More recently, a component-wise view of MOEAs has emerged, with flexible frameworks combining algorithmic components from different MOEAs. The number...

متن کامل

Preference-guided evolutionary algorithms for many-objective optimization

This paper presents a technique that incorporates preference information within the framework of multi-objective evolutionary algorithms for the solution of many-objective optimization problems. The proposed approach employs a single reference point to express the preferences of a decision maker, and adaptively biases the search procedure toward the region of the Pareto-optimal front that best ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Archives of Computational Methods in Engineering

سال: 2020

ISSN: 1134-3060,1886-1784

DOI: 10.1007/s11831-020-09415-3